Molecular Profiling of TP53 Mutations in Acute Myeloid Leukemia: A Prognostic and Therapeutic Insight

Research Article                

Journal of Global Hematology                

 Volume 2, Issue 1, 2021, Pages 12-23    10.18081/JGH/2021.2/12

Authors
Yassine El Harrak 1 , Salma Berrada 2 , Amina Touhami 3 *

Affiliation
1 Department of Hematology, Mohammed V University Hospital, Rabat, Morocco.
2 Laboratory of Molecular Biology and Genomics, Faculty of Sciences, Mohammed V University, Rabat, Morocco.
3 Department of Clinical Oncology, National Institute of Oncology, Rabat, Morocco.

Received 24 January 2021; revised 25 March 2021; accepted 30 March 2021; published 14 April 2021


Abstract

Background
TP53 mutations represent a clinically significant subset of molecular alterations in acute myeloid leukemia (AML), frequently associated with complex cytogenetics, chemoresistance, and poor prognosis. Data on TP53-mutated AML from North African populations remain limited.

Objective
To determine the prevalence, clinical characteristics, and prognostic impact of TP53 mutations in AML patients treated at a tertiary cancer center in Morocco.

Methods
This retrospective study included 80 adult patients with newly diagnosed AML at Mohammed V University Hospital, Rabat, from January 2017 to December 2020. Targeted next-generation sequencing was performed to detect TP53 mutations. Clinical data, cytogenetic profiles, treatment responses, and survival outcomes were analyzed and compared between TP53-mutated and TP53 wild-type groups.

Results
TP53 mutations were identified in 27.5% of patients and were significantly associated with complex cytogenetics (p < 0.01). The complete remission (CR) rate was lower in TP53-mutated patients (50.0%) compared to wild-type cases (62.1%). Mean overall survival was 9.5 months for TP53-mutated patients versus 11.1 months in the wild-type group. Kaplan-Meier analysis showed decreased survival probability among TP53-mutated patients.

Conclusion
TP53 mutations in AML are strongly associated with adverse cytogenetic features, lower response rates, and poor survival outcomes. These findings support routine molecular screening for TP53 mutations at diagnosis and highlight the need for targeted therapeutic approaches in this high-risk population.

Keywords
Acute myeloid leukemia; TP53 mutation; prognostic marker; molecular profiling; Morocco; complex karyotype; survival analysis

References

1.

1.     Döhner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med. 2015;373(12):1136-1152. doi:10.1056/NEJMra1406184

2.     Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209-2221. doi:10.1056/NEJMoa1516192

3.     Ley TJ, Miller C, Ding L, et al. Genomic and epigenomic landscapes of adult de novo AML. N Engl J Med. 2013;368(22):2059-2074. doi:10.1056/NEJMoa1301689

4.     Rucker FG, Schlenk RF, Bullinger L, et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 2012;119(9):2114-2121. doi:10.1182/blood-2011-04-348862

5.     Vousden KH, Prives C. Blinded by the Light: The Growing Complexity of p53. Cell. 2009;137(3):413-431. doi:10.1016/j.cell.2009.04.037

6.     Kadia TM, Jain P, Ravandi F, et al. TP53 mutations in AML and MDS: The elephant in the room. Best Pract Res Clin Haematol. 2018;31(4):370-376. doi:10.1016/j.beha.2018.09.007

7.     Welch JS, Petti AA, Miller CA, et al. TP53 and Decitabine in AML: Clinical and Molecular Outcomes. Blood. 2016;128(22):845.

8.     Stengel A, Kern W, Haferlach T, et al. TP53 mutations occur in 15% of therapy-related myeloid neoplasms and in 5% of de novo acute myeloid leukemias and are strongly associated with a complex aberrant karyotype. Leukemia. 2016;30(3):682-688. doi:10.1038/leu.2015.313

9.     Kastenhuber ER, Lowe SW. Putting p53 in context. Cell. 2017;170(6):1062-1078. doi:10.1016/j.cell.2017.08.028

10.  Bernard E, Nannya Y, Hasserjian RP, et al. Implications of TP53 allelic state for genome stability, clinical presentation, and outcomes in myelodysplastic syndromes. Nat Med. 2020;26(10):1549-1556. doi:10.1038/s41591-020-1008-z

11.  Lindsley RC, Mar BG, Mazzola E, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125(9):1367-1376. doi:10.1182/blood-2014-11-610543

12.  Wong TN, Ramsingh G, Young AL, et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukemia. Nature. 2015;518(7540):552-555. doi:10.1038/nature13968

13.  Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424-447. doi:10.1182/blood-2016-08-733196

14.  Middeke JM, Herold T, Rücker FG, et al. TP53 mutation in AML: Impact on survival and response to intensive chemotherapy and allogeneic stem cell transplantation. Blood Adv. 2020;4(24):6234-6245. doi:10.1182/bloodadvances.2020002864

15.  DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naïve, elderly patients with AML. Blood. 2019;133(1):7-17. doi:10.1182/blood-2018-08-868752

16.  Welch JS, Petti AA, Miller CA, et al. TP53 and Decitabine in AML: Clinical and Molecular Outcomes. Blood. 2016;128(22):845.

17.  Montalban-Bravo G, Takahashi K, Garcia-Manero G. Novel agents in AML: Moving toward targeted and immune-based therapies. Clin Adv Hematol Oncol. 2019;17(6):334-344.

18.  Sallman DA, DeZern AE, Garcia-Manero G, et al. Eprenetapopt (APR-246) and Azacitidine in TP53-Mutant Myelodysplastic Syndromes. J Clin Oncol. 2021;39(14):1584-1594. doi:10.1200/JCO.20.02173

19.  Andreeff M, Kelly KR, Yee K, et al. Results of the phase I trial of RG7112, a small-molecule MDM2 antagonist in leukemia. J Clin Oncol. 2016;34(15_suppl):7009.

20.  Döhner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med. 2015;373(12):1136-1152. doi:10.1056/NEJMra1406184

21.  Kadia TM, Jain P, Ravandi F, et al. TP53 mutations in AML and MDS: The elephant in the room. Best Pract Res Clin Haematol. 2018;31(4):370-376. doi:10.1016/j.beha.2018.09.007

22.  Rucker FG, Schlenk RF, Bullinger L, et al. TP53 alterations in acute myeloid leukemia with complex karyotype. Blood. 2012;119(9):2114-2121. doi:10.1182/blood-2011-04-348862

23.  Welch JS, Petti AA, Miller CA, et al. TP53 and Decitabine in AML: Clinical and Molecular Outcomes. Blood. 2016;128(22):845.

24.  Stengel A, Kern W, Haferlach T, et al. TP53 mutations in therapy-related myeloid neoplasms. Leukemia. 2016;30(3):682-688. doi:10.1038/leu.2015.313

25.  Middeke JM, Herold T, Rücker FG, et al. TP53 mutation in AML: Impact on survival and response to intensive chemotherapy and allogeneic stem cell transplantation. Blood Adv. 2020;4(24):6234-6245. doi:10.1182/bloodadvances.2020002864

26.  Lindsley RC, Mar BG, Mazzola E, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125(9):1367-1376. doi:10.1182/blood-2014-11-610543

27.  Bernard E, Nannya Y, Hasserjian RP, et al. Implications of TP53 allelic state for genome stability, clinical presentation, and outcomes. Nat Med. 2020;26(10):1549-1556. doi:10.1038/s41591-020-1008-z

28.  Dombret H, Seymour JF, Butrym A, et al. International phase 3 study of azacitidine vs conventional care regimens in older AML patients. Blood. 2015;126(3):291-299. doi:10.1182/blood-2015-01-621664

29.  DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naïve, elderly AML patients. Blood. 2019;133(1):7-17. doi:10.1182/blood-2018-08-868752

30.  Sallman DA, DeZern AE, Garcia-Manero G, et al. Eprenetapopt (APR-246) and Azacitidine in TP53-Mutant MDS. J Clin Oncol. 2021;39(14):1584-1594. doi:10.1200/JCO.20.02173

31.  Andreeff M, Kelly KR, Yee K, et al. Results of the phase I trial of RG7112, a small-molecule MDM2 antagonist in leukemia. J Clin Oncol. 2016;34(15_suppl):7009. NG Yousif, LA Ahmed, AM Sadeq. The Prevalence of Anemia and Hemoglobinpathies among Students: Cross Section Study. Prensa Med Argent, 2020.

 

Download article

PDF

XML

How to cite
Zhang W,Chen L, Xu J. Evaluation of Direct Oral Anticoagulants in the Management of Cancer-Associated Thrombosis A Single-Center Experience. Journal of Global Hematology 2021;2(1):1-11.

More citation

Cite
APA (7th edition):
, . (2021, April 14). Molecular Profiling of TP53 Mutations in Acute Myeloid Leukemia: A Prognostic and Therapeutic Insight. Journal of Global Hematology. https://globalhematology.com/article_004html/
MLA (9th edition):
, . "Molecular Profiling of TP53 Mutations in Acute Myeloid Leukemia: A Prognostic and Therapeutic Insight." Journal of Global Hematology, 14 April 2021, https://globalhematology.com/article_004html/.
Chicago (17th edition, Notes and Bibliography):
, . "Molecular Profiling of TP53 Mutations in Acute Myeloid Leukemia: A Prognostic and Therapeutic Insight." Journal of Global Hematology. Last modified April 14, 2021. https://globalhematology.com/article_004html/.
Harvard:
,  (2021) 'Molecular Profiling of TP53 Mutations in Acute Myeloid Leukemia: A Prognostic and Therapeutic Insight', Journal of Global Hematology, 14 April. Available at: <https://globalhematology.com/article_004html/> (Accessed: 3 January 2026).
Vancouver:
 . Molecular Profiling of TP53 Mutations in Acute Myeloid Leukemia: A Prognostic and Therapeutic Insight [Internet]. Journal of Global Hematology; 2021 [cited 2026 Jan 03]. Available from: https://globalhematology.com/article_004html/

Article metric

 
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License
All articles published in The Journal of Global Hematology (JGH) are licensed under Copyright Creative Commons Attribution 4.0 International License.